[Kinesin-14 leaps to pole position in bipolar spindle assembly].

نویسنده

  • Janet L Paluh
چکیده

Formation of a mitotic spindle occurs almost effortlessly as cells cycle and is essential for chromosome segregation. Early in a cell cycle, the replication of centrosomes or spindle pole bodies at G1/S leaves mother and daughter poles in close association until forced apart into a bipolar arrangement at mitotic onset. Kinesin-like proteins (Klps) generate a variety of forces that contribute to the timing, formation and maintenance of spindle bipolarity. The ability of two key players, Kinesin-5 and Kinesin-14, to cross-link both parallel and anti-parallel microtubules has led to emphasis on spindle microtubule interactions in the spindle assembly mechanism. Recent identification of a Kinesin-14 binding site on gamma-tubulin, a ubiquitous component of microtubule organizing centers (MTOCs) at poles combined with the ability of changes to MTOC complexes to regulate bipolarity, now shifts an inquisitive eye to pole mechanisms and to the complexities evolving around MTOCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A microtubule polymerase cooperates with the kinesin-6 motor and a microtubule cross-linker to promote bipolar spindle assembly in the absence of kinesin-5 and kinesin-14 in fission yeast

Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end-directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end-directed motor kinesin-14 restores sp...

متن کامل

Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast

Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted...

متن کامل

Loss of kinesin-14 results in aneuploidy via kinesin-5-dependent microtubule protrusions leading to chromosome cut

Aneuploidy-chromosome instability leading to incorrect chromosome number in dividing cells-can arise from defects in centrosome duplication, bipolar spindle formation, kinetochore-microtubule attachment, chromatid cohesion, mitotic checkpoint monitoring or cytokinesis. As most tumours show some degree of aneuploidy, mechanistic understanding of these pathways has been an intense area of researc...

متن کامل

KLP-7 acts through the Ndc80 complex to limit pole number in C. elegans oocyte meiotic spindle assembly

During oocyte meiotic cell division in many animals, bipolar spindles assemble in the absence of centrosomes, but the mechanisms that restrict pole assembly to a bipolar state are unknown. We show that KLP-7, the single mitotic centromere-associated kinesin (MCAK)/kinesin-13 in Caenorhabditis elegans, is required for bipolar oocyte meiotic spindle assembly. In klp-7(-) mutants, extra microtubul...

متن کامل

Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast

Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ai zheng = Aizheng = Chinese journal of cancer

دوره 27 9  شماره 

صفحات  -

تاریخ انتشار 2008